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Abstract. In the presence of viscosity the hydraulic jump in one dimension is seen to be a first-order
transition. A scaling relation for the position of the jump has been determined by applying an averaging
technique on the stationary hydrodynamic equations. This gives a linear height profile before the jump, as
well as a clear dependence of the magnitude of the jump on the outer boundary condition. The importance
of viscosity in the jump formation has been convincingly established, and its physical basis has been
understood by a time-dependent analysis of the flow equations. In doing so, a very close correspondence
has been revealed between a perturbation equation for the flow rate and the metric of an acoustic white
hole. We finally provide experimental support for our heuristically developed theory.

PACS. 47.15.Cb Laminar boundary layers – 47.60.+i Flows in ducts, channels, nozzles, and conduits –
47.32.Ff Separated flows

1 Introduction

A stream of water impinging vertically on to a horizontal
surface spreads out radially in a thin sheet along the plane
from the point of impingement, and at a certain radius the
height of the flowing layer of water suddenly increases.
In this two-dimensional flow, such an abrupt increase in
the level of the liquid is known as the circular hydraulic
jump [1–3]. It is a familiar observation, seen everyday in
the kitchen sink. A similarly abrupt increase in the height
– a jump – occurs in the one-dimensional flow as well,
and this phenomenon finds mention in many introductory
text books on hydrodynamics [4–8]. A very regularly cited
practical example of the jump in the one-dimensional flow
is the passage of a tidal bore up a river [7]. However, the
texts include viscosity – arguably the primary physical
cause of the jump – only through a phenomenologically
added friction term [6]. Consequently, starting from the
Navier-Stokes equation, it has not been possible to predict
the position of the jump in terms of the volumetric flow
rate. For the two-dimensional flow, on the other hand, the
role of viscosity has been very clearly taken into account
in the works of Bohr et al. [9–11]. This has led to a scaling
dependence for the position of the jump on the volumetric
flow rate. The two-dimensional problem, however, is suffi-
ciently complicated, and in predicting the position of the
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jump in this case, knowledge of asymptotic solutions has
been necessary to a fair extent.

Motivated by the methods applied to study the two-
dimensional flow, and by the results obtained thereof, we
make a similar analysis of the one-dimensional flow in this
work. We derive a profile of the height of the liquid layer in
a one-dimensional open-channel flow by making transpar-
ent approximations about the nature of the flow. We find
that the position of the jump is sensitive to the vertical
profile of the velocity field, and we make use of this de-
pendence to conclude that the profile is far from parabolic
and resembles more closely a turbulent profile. There ex-
ists no definite result for the magnitude of the jump. Text
books [5–8] analyse the problem in one dimension, from
which it can be shown that for h1 and h2 being the heights
of the liquid layer before and after the jump respectively,
the ratio h2/h1 is unity for the critical value of the Froude
number F (i.e. for F = 1), and increases smoothly as
the Froude number is increased from unity. This indicates
that the jump is a second-order transition. Contradicting
this viewpoint, in our present analysis we put forward a
heuristic picture of the role of viscosity and find that in
its presence the jump attains a finite value at the critical
Froude number. This is exactly what happens in a first-
order transition. In our calculations we also establish a
connection between the magnitude of the jump and the
outer boundary condition. We use steady hydrodynamic
equations to obtain the position and the height of the
jump. In the process we reinforce our conclusion that the
jump is of the nature of a first-order transition.



418 The European Physical Journal B

Fig. 1. The geometry of the experimental set up. The hori-
zontal flow starts from the edge AB.

Furthermore, we carry out a time-dependent linearised
perturbative analysis about the steady flow solution. We
perturb the steady and constant flow rate, and see that
viscous dissipation, of course, drives the system back to-
wards stability, but what we have made a note of with
much greater interest is that the equation for perturba-
tion in the flow has a remarkable degree of closeness with
a metric that implies an acoustic white hole. This anal-
ogy, coupled with some characteristic time scales obtained
through the perturbative analysis, enables us to argue for
a physical basis behind the formation of the jump.

It is in a largely heuristic spirit that we have made
our theoretical foray into the channel flow problem. To
bolster our arguments, we have therefore brought forth
some experimental evidence in support of our theory. We
have measured the magnitude of the jump and the height
profile of the flow before the jump. On both counts we find
good agreement with our theory. From our experimental
data we can also easily infer that the parabolic profile in
the vertical direction has no validity.

2 Role of viscosity: a heuristic study

The flow occurs in a channel of width L, with L being
very much greater than the depth of the liquid layer, as
has been schematically shown in Figure 1. At some point
the depth changes from h1 to h2. We work with a control
volume which extends from a point before the jump to a
point after the occurrence of the jump. Ignoring the effect
of viscosity, the continuity equation can be written down
as

Lh1u1 = Lh2u2 = Q (1)

in which u1 and u2 are the flow velocities before and af-
ter the jump respectively, while Q is the volumetric flow
rate. The momentum change ρQ (u2 − u1) per unit time is
brought about by the force due to the pressure difference.
This gives the balancing condition

1
2
ρgL

(
h2

1 − h2
2

)
= ρQ (u2 − u1) . (2)

First writing H = h2/h1 and the Froude number F as
F = u2

1/gh1, we combine equations (1) and (2), to get

H (1 + H) − 2F = 0 (3)

Fig. 2. Control volume of the flow, demarcated by the dotted
lines. The boundary layer has an average thickness of δ.

which can be solved to get 2H = −1+
√

1 + 8F . If we now
write F = 1+ϑ with the condition 0 < ϑ � 1, then to first
order in ϑ we will get H = 1+2ϑ/3, which establishes the
standard text book interpretation [5–7] of the jump being
a continuous transition as a function of F .

We need to modify the above picture in the presence
of viscosity. The most important contribution of viscos-
ity will be the formation of a boundary layer. Practically
speaking, the thickness of the boundary layer increases
as the flow progresses along the plane, but in our control
volume we have constrained the flow to have an average
thickness of δ, within which the velocity increases from
zero to u1, while over the depth of h1 − δ, the flow veloc-
ity remains at a constant value of u1. This state of affairs
has been schematically represented in Figure 2. After the
jump, beyond a mixing zone characterized by vortices, the
flow has a mean speed u2 and an increased depth h2. How-
ever, it must be noted here that following the jump, the
flow has been known to be turbulent – something that
may very readily be appreciated from the analogous case
of the circular hydraulic jump [12] – and it becomes too
much complicated to be thought of simply in terms of a
boundary layer. Therefore we keep our analysis of the con-
trol volume confined to the flow region before the jump.
Within the boundary layer we make use of an arbitrary
profile i.e. u(z) = u1ϕ(z/δ) with ϕ(ξ) ≤ 1 for all ξ, and
with ξ itself constrained by the range 0 ≤ ξ ≤ 1. The
continuity equation now reads

Lu1 (h1 − δ) + L

∫ δ

0

u1ϕ

(
z

δ

)
dz = Lu2h2 = Q (4)

which, following some manipulations, can be rendered as

Lu1 [h1 − δ (1 − I1)] = Lu2h2 = Q (5)

where I1 =
∫ 1

0
ϕ(ξ) dξ. In the presence of viscosity, this is

the modified form of equation (1).
The force balance equation requires a similar modifi-

cation in the momentum flow rate. Before the jump the
amount of momentum entering the control volume per
unit time is

Lρ (h1 − δ)u2
1 + Lρ

∫ δ

0

u2
1ϕ

2

(
z

δ

)
dz =

ρQu1 − Lρu2
1δ (I1 − I2) (6)

where I2 =
∫ 1

0
ϕ2(ξ) dξ. The amount of momentum leav-

ing the control volume per unit time is ρQu2 and the force



S.B. Singha et al.: Hydraulic jump in one-dimensional flow 419

due to pressure on the control volume is ρLg
(
h2

1 − h2
2

)
/2

acting to the right. The force balance equation now be-
comes,

ρQ (u2 − u1) + Lρδu2
1 (I1 − I2) =

1
2
ρgL

(
h2

1 − h2
2

)
. (7)

Using the continuity condition as expressed in equa-
tion (5), we find

u2
1

[
h1 − δ(1 − I1)

]
[
h1

h2
− 1 − δ (1 − I1)

h2

]

+ δu2
1 (I1 − I2) =

g

2
(
h2

1 − h2
2

)
. (8)

As we have done for the inviscid case, we use the same def-
inition of H and F , and obtain an expression from equa-
tion (8) that reads as

2F
(

1
H − 1

)
− 2F δ

h1

[
2 (1 − I1)

1
H + I2 − 1

]

+ 2F δ2

h2
1

(1 − I1)
2 1
H = 1 −H2 (9)

from which we can easily see that if δ = 0, i.e. if the
effect of viscosity is neglected, then the result given by
equation (3) will be recovered. In this inviscid limit, pre-
scribing F = 1 + ϑ leads to H = 1 + ε with ε = 2ϑ/3.
In the presence of viscosity, we once again seek a jump
solution by writing H = 1 + ε with ε > 0 for F = 1 + ϑ.
In the limit ϑ −→ 0, we will then have the cubic equation

ε3 + 3ε2 + 2
δ

h1
(1 − I2)

[
ε− (1 + I2 − 2I1)

(1 − I2)

]

+ 2
δ2

h2
1

(1 − I1)
2 = 0. (10)

It is clear that there can be no positive root of ε which is
greater than (1 + I2 − 2I1)/(1 − I2) since in that case all
terms on the left hand side of equation (10) will be pos-
itive. For a Couette profile I1 = 1/2 and I2 = 1/3. This
gives ε = 0.5 as an upper limit. For the parabolic profile
I1 = 2/3 and I2 = 8/15, giving ε = 0.43 as a maximum
value. On the other hand, a continuous transition would
imply that ε = 0. If we use this value of ε in equation (10),
we will get the condition δ/h1 = (1 + I2 − 2I1)/(1 − I1)2,
which, for both the Couette and the parabolic profiles
should give a value of δ/h1 to be greater than unity. This
is physically an untenable result, because δ is the average
thickness of the boundary layer taken in the region before
the jump, and as such, its value must be less than h1. This
inconsistency is indication enough that ε is not zero, and
therefore the transition is not continuous.

For a more methodical evaluation of the roots of ε,
we will have to solve equation (10). To that end, for no-
tational convenience we write the third degree expression
on the left-hand side of equation (10) as Φ(ε), and then
solve for Φ(ε) = 0. To find the roots of this cubic equa-
tion, it would be necessary to eliminate the second de-
gree term in ε, by the suitable substitution ε = ζ − 1.

Fig. 3. Plot of Φ(ε) versus ε. The roots of ε as given by equa-
tion (10), are to be found for Φ(ε) = 0. Both plots have been
drawn for δ/h1 = 0.5, with the continuous curve representing
the parabolic profile, and the dotted curve representing the
profile for the Couette flow.

This will then render equation (10) in the standard form
as ζ3 + Pζ + Q = 0, where P = −3 + 2(1 − I2)δ/h1 and
Q = 2[1 − (1 − I2)δ/h1 + (1 − I1)2(δ/h1)2]. The discrimi-
nant, D, is given by D = (Q2/4) + (P3/27).

We choose 0.5 as a fiduciary value for δ/h1, and using
this number for both the parabolic profile and the profile
for the Couette flow, we find D < 0. This must then im-
ply that there should be three real roots of ε for Φ(ε) = 0.
This is very much in keeping with the fact that the func-
tion Φ(ε) has two real turning points, which can be ob-
tained from the condition Φ′(ε) = 0. These points are at
ε = −1 ± √

1 − (2/3)(1 − I2)δ/h1. Further, when ε = 0,
the function Φ(ε) has a negative value. This, in conjunc-
tion with the fact that Φ(ε) −→ +∞ when ε −→ +∞,
could only mean that at most there should be only one
positive real root of ε, a conclusion that has been clearly
illustrated in Figure 3, in which we have plotted Φ(ε)
against ε. For both the Couette and the parabolic pro-
files, three roots are to be found for Φ(ε) = 0, and in each
case only one of these roots is positive. A numerical eval-
uation by the bisection method shows that for a parabolic
profile the positive root of ε is about 0.15, while for the
Couette flow it is 0.17. For both these cases we have also
assured ourselves that even for the limiting case of δ/h1

being unity, ε will have a positive root. The inescapable
conclusion therefore is that the jump is a first-order transi-
tion, independent of the vertical velocity profile, because
at the critical Froude number (F = 1) the jump has a
finite non-zero value. The present analysis drives home
the point that when dissipation is included in the conven-
tional control volume analysis, the second-order transition
immediately changes to a first-order transition.

3 A hydrodynamic analysis from the steady
flow equations

We consider an open rectangular channel of width L (as
shown schematically in Fig. 1) in which a liquid is flowing
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in streamline motion. An arrangement is made such that
the liquid flows down an inclined channel and starts its one
dimensional motion in the horizontal plane from the edge
AB. The x axis is chosen in the direction of flow, the y
axis along the width of the channel and the z axis in the
vertical upward direction. At any point, the velocity of the
liquid is, in general, a function of the coordinates x, y and
z. In our present arrangement the width of the channel
is sufficiently large (about 9.1 cm) when compared with
the height of the liquid layer (which is of the order of a
few millimetres), and we can therefore assume that there
is no variation along the y axis for the velocity. On the
other hand, both its x component, u, and z component, w,
would have a spatial dependence in the form u ≡ u(x, z)
and w ≡ w(x, z).

For an incompressible fluid, the local continuity equa-
tion gives,

∂u

∂x
+
∂w

∂z
= 0 (11)

and for a not very viscous liquid (e.g. water) the
Navier-Stokes equation in the boundary-layer approxima-
tion [13] gives

u
∂u

∂x
+ w

∂u

∂z
= −gdh

dx
+ ν

∂2u

∂z2
(12)

where h ≡ h(x) is the height of the liquid layer at a
distance x, and ν is the kinematic viscosity. The bound-
ary conditions of the flow are u(x, 0) = w(x, 0) = 0, and
∂u/∂z = 0 at z = h(x). In addition to this, the condition
for constant volume flux gives

L

∫ h(x)

0

u(x, z) dz = Q. (13)

We have assumed here that the shearing stress is zero at
the free surface z = h(x), since the viscosity of air is negli-
gible. In the boundary-layer approximation it is assumed
that the vertical velocity w(x, z) is very small compared
with the horizontal component u(x, z). Furthermore, the
variation of u(x, z) is much faster in the z direction as
compared with the x direction.

At this stage we follow Bohr et al. [9] to do an averag-
ing of the flow variables over the z direction. We define

〈
ψ(x, z)

〉
=

1
h(x)

∫ h(x)

0

ψ(x, z) dz (14)

where the averaged quantity in the angled brackets be-
comes a function of x only. Under the assumption of a flat
free surface such that w(x, z) = 0 at z = h(x), and along
with the use of equation (11), we can readily show that

〈
w
∂u

∂z

〉
=

〈
u
∂u

∂x

〉
(15)

and 〈
∂2u

∂z2

〉
= − 1

h(x)
∂u

∂z

∣
∣
∣
∣
z=0

. (16)

We now make the approximations,
〈
u
∂u

∂x

〉
= α〈u〉∂〈u〉

∂x
(17)

and
∂u

∂z

∣
∣∣
∣
z=0

= β
〈u〉
h(x)

(18)

where α and β are numbers of O(1) and they depend upon
the velocity profile. For a parabolic profile α = 6/5 and
β = 3. It is easy to check that the parameters α and β are
strictly constants when we make, following Watson [3], the
reasonable scaling ansatz that u(x, z) = U(x)F [z/h(x)].
The fact that our experiment will determine a combina-
tion of α and β is important regarding the nature of the
vertical profile of the velocity field over which we average.

With the above approximations and identity, and writ-
ing 〈u〉 as v, equation (12) becomes

2αv
dv
dx

= −gdh
dx

− βν
v

h2
. (19)

From equation (13) we get Lvh = Q, which we can use to
eliminate v from equation (19) and get

[
2α

(
Q

L

)2

− gh3

]
dh
dx

= βν
Q

L
. (20)

The derivation of the above equation may look somewhat
heuristic, but it has been much more systematic to the ex-
tent that it avoids the inclusion of an artificial friction loss.
The structure of this equation, however, is quite similar to
what is well known in hydraulic jump literature [6], to de-
rive which, the conventional recourse has been to use the
Bernoulli equation supplemented by a friction loss. In our
derivation of equation (20), the approximations made on
the Navier-Stokes equation have been clearly delineated,
and the resulting profile has been seen to be sensitive to
the velocity field in a fashion that can be experimentally
probed. This equation shows that if ν = 0, then h(x)
would be a constant. Therefore, without viscosity the hy-
draulic jump can be obtained only if we explicitly seek
a solution with the jump extraneously imposed, which is
the way it has been conventionally treated in text books.
The jump occurs when dh/dx displays singular behaviour
at h = hj such that gh3

j = 2α(Q/L)2. The advantage of
equation (20) is that it can be exactly integrated. This
gives,

gh

(
h3

j −
h3

4

)
= βν

Q

L
x+ C (21)

where C is a constant of integration. The position xj of
the jump is obtained by setting h = hj in equation (21).
This yields

xj =
3
β

(
α4

4

)1/3(
Q

L

)5/3

ν−1g−1/3 + C̃ (22)

where C̃ is some other constant.
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The complete profile of h(x) is described by equa-
tion (21), but it should be noted that it gives multiple
h(x) for a given x. However, for values of h(x) which are
even moderately less that hj, the profile according to equa-
tion (21) can be approximated as

h(x) ∼
(
βν

2α
L

Q

)
x (23)

which tells us that for small x the height of the liquid
layer increases linearly. This feature is markedly different
from the case of the radial spread of a liquid stream on
a horizontal plate in which the height gradually decreases
in the region within the jump [1].

With the help of equation (21) we are now in a posi-
tion to get a physical picture of the jump. We introduce
the dimensionless variables H = h/hj and X = x/x̃j in
which, x̃j = xj − C̃. We thus obtain a dimensionless form
of equation (21) as

4H −H4 = 3 (X −D) (24)

with D being a dimensionless constant. Differentiating
equation (24) will readily show that atH = 1, the function
H(X) will have a vertical tangent – something that can be
conceived of as a discontinuity in the physical flow. Our
analysis is restricted to the range X ≥ 0. The point along
the X-axis, where the flow will encounter this discontinu-
ity, will be determined by the inner boundary condition.
To show this, we set the condition H = 0 at an arbitrary
X = Xin, to get D = Xin. When X = 1+Xin, we will have
H = 1, which gives us a clear indication that the value of
Xin will determine the position of the discontinuity.

A generic inner boundary condition is that H = 0 at
X = 0 (ignoring a small initial non-zero value of H at
X = 0), giving us Xin = D = 0. The solution correspond-
ing to this particular boundary condition is represented by
the lower branch in Figure 4. In the dimensionless notation
that we have introduced, this means a profile proceeding
from X = 0 to X = 1 and rising from H = 0 to H = 1.
Since the inner solution diverges infinitely at X = 1, the
flow has to physically go beyond this point by the fitting of
the lower branch to the upper branch in Figure 4, through
the discontinuity. We treat this discontinuity as the jump
in the flow.

The integration constant D for the upper branch is
to be fixed by the outer boundary condition. This is de-
termined by the physical requirement that H = 1 (in-
finite slope) at X = Xe, with Xe corresponding to a
position slightly left to the edge of the channel where
the liquid falls off. We cannot extend the solution to the
edge due to singular flow at the outlet. For the outer
boundary condition stated above we will get the solution
4H −H4 = 3 (X −Xe + 1). At the position of the jump,
i.e. at X = 1, the outer solution will give the magnitude
of the jump, HJ, making it evident that HJ has a depen-
dence on Xe. It should be a worthwhile exercise to study
this dependence.

The roots of HJ can be determined by solving the bi-
quadratic equation given by H4

J − 4HJ + 3 (2 −Xe) = 0.

Fig. 4. Fitting the inner and outer solutions via a shock. The
inner solution corresponds to X < 1, while the outer solution
corresponds to X > 1. Each solution has been determined by
a different boundary condition. The vertical dotted line (the
shock) joins the two solutions.

To that end, we will first have to carry out a trans-
formation with the help of a new variable η, to write(
H2

J + η
)2 = 2ηH2

J + η2 + 4HJ − 3 (2 −Xe), and then re-
quire that by a suitable choice of η, the right hand side will
be rendered a perfect square. This requirement will mean
that the discriminant of the quadratic in HJ on the right
hand side should vanish, to ultimately yield the auxiliary
cubic equation η3 − 3η (2 −Xe) − 2 = 0.

The discriminant, ∆, of this cubic equation will be
given by ∆ = 1 − (2 −Xe)

3, and it is quite easy to see
that for Xe > 1, there will always be a positive value
for ∆. Therefore, η can have only one real root, η0, given

by η0 =
(
1 +

√
∆

)1/3

+
(
1 −√

∆
)1/3

. To solve for HJ,
we now use this value of η0 in the biquadratic equation(
H2

J + η0
)

= ±√
2η0

(
HJ + η−1

0

)
. Of course, there will be

four roots of HJ, but the real roots should correspond
to the choice of the positive sign. Solving the relevant
quadratic equation and choosing to keep only the phys-
ically meaningful positive root, will give us the solution of
HJ as

HJ =
√
η0
2

+

√(
2
η0

)1/2

− η0
2
. (25)

An interesting conclusion that can be derived from the
relation of the jump height above is that for Xe � 1, the
maximum height of the jump will asymptotically be given
by HJ � (3Xe)

1/4.
As a specific case we set Xe = 2, and then determining

the values of both ∆ and η0, we see that HJ = 41/3. This
result could alternatively be derived directly from equa-
tion (24) by the use of the boundary condition, H = 1,
at X = 2. This will give D = 1, and for this particular
boundary condition, the resulting outer solution has been
plotted in Figure 4. In this instance the fractional change
in height at the jump position would be 41/3 − 1 � 0.59.

The fitting of the upper and the lower branches (each
determined by a different boundary condition) has to be
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done via a shock, by requiring that the mass and momen-
tum fluxes remain unchanged through the discontinuity –
a condition that may be derived from the inviscid equa-
tions. From equations (1) and (2), with both h1 and h2

scaled by hj to giveH1 and H2, we get what Bohr et al. [9]
call the jumpline H1H2 (H1 +H2) = α−1. The jump takes
place when H of the viscous solution in the lower branch
of Figure 4 becomes equal to H1 of the inviscid jumpline
for a given value of α. In general, the shock fitting leads
to a jump position actually slightly left of X = 1.

4 Time-dependence in the channel flow

So far our analysis has been carried out in terms of the
steady flow equations only. We now consider explicit time-
dependence in both the equation of continuity and the
Navier-Stokes equation. This will necessitate the time-
dependent generalisation of both the flow variables h, the
local height of the flow, and v, the vertically integrated av-
erage flow velocity. The resultant dynamic equations may
then be written as

∂h

∂t
+

∂

∂x
(vh) = 0 (26)

and
∂v

∂t
+ v

∂v

∂x
+ g

∂h

∂x
= −ν v

h2
(27)

respectively.
For the purpose of carrying out a linear stability anal-

ysis of the flow in real time, it will be convenient for us
to work with a new variable which we define as f = vh.
The new variable f can be physically associated with the
time-dependent volumetric flow rate, and its steady so-
lution, as can be seen from equation (26), is a constant.
We use solutions of the form v(x, t) = v0(x) + v′(x, t)
and h(x, t) = h0(x) + h′(x, t), in which the subscript 0
indicates steady solutions, while the primed quantities
are time-dependent perturbations about those steady so-
lutions. Linearising in these fluctuating quantities gives
us the fluctuation of f about its constant steady value
f0 = v0h0 = Q/L, as

f ′ = v0h
′ + h0v

′. (28)

In terms of f ′, we can then write from equation (26),

∂h′

∂t
= −∂f

′

∂x
(29)

and this in turn, along with equation (28), gives,

∂v′

∂t
=

1
h0

(
∂f ′

∂t

)
+
v0
h0

(
∂f ′

∂x

)
. (30)

A further partial derivative of equation (30) with respect
to time yields

∂2v′

∂t2
=

∂

∂t

[
1
h0

(
∂f ′

∂t

)]
+

∂

∂t

[
v0
h0

(
∂f ′

∂x

)]
. (31)

The significance of the form in which we have kept equa-
tion (31), will be apparent soon. Linearising in the per-
turbed quantities in equation (27) gives

∂v′

∂t
+

∂

∂x
(v0v′) + g

∂h′

∂x
= − ν

h2
0

(
v′ − 2v0

h′

h0

)
(32)

which in turn, upon partially differentiating with respect
to t, yields

∂2v′

∂t2
+

∂

∂x

(
v0
∂v′

∂t

)
+ g

∂

∂x

(
∂h′

∂t

)
=

− ν

h2
0

[
∂v′

∂t
− 2

v0
h0

(
∂h′

∂t

)]
. (33)

In equation (33) above, we substitute for the first and
the second order time derivatives of h′ and v′ from equa-
tions (29) to (31). This will lead to the result

∂

∂t

[
1
h0

(
∂f ′

∂t

)]
+

∂

∂t

[
v0
h0

(
∂f ′

∂x

)]
+

∂

∂x

[
v0
h0

(
∂f ′

∂t

)]

+
∂

∂x

[
1
h0

(
v2
0−gh0

) ∂f ′

∂x

]
=− ν

h3
0

(
∂f ′

∂t
+3v0

∂f ′

∂x

)
. (34)

At this juncture it should be most instructive for us to
examine equation (34) in its inviscid limit, i.e. when ν = 0.
In connection with this, it should also be very much worth
our while to consider some recent studies [14–16] which
have revealed a close analogy between the propagation
of a wave in a moving fluid and of light in curved space-
time. In particular Schützhold and Unruh have shown how
gravity waves in a shallow layer of liquid are governed by
the same wave equation as a scalar field in curved space-
time [14]. For an inviscid, incompressible and irrotational
flow, these authors have prescribed the flow velocity to be
the gradient of a scalar potential. Perturbing this potential
about its background value, under the restricted condition
of the flow height being a constant, leads to an effective
metric of the flow, in which the velocity of gravity waves
replace the speed of sound in sonic analogs that faithfully
reflect features seen in general relativistic studies [14,15].

We now proceed to demonstrate that our perturbative
analysis of what is essentially a dissipative system (since
it includes viscosity), will, in its inviscid limit, deliver the
same metric obtained by Schützhold and Unruh from their
purely inviscid model. It must be stressed here that our
choice of perturbing the flow rate is particularly expedi-
ent, since conservation of matter holds good even in a
system that undergoes viscous dissipation. It is to be fur-
ther noted that the background velocity and flow height
in our treatment are in general functions of space and not
constants. Having made these observations to emphasise
the greater generality and exactitude of our approach, we
can then extract the inviscid terms from equation (34)
by setting ν = 0, to ultimately render these terms into a
compact formulation that looks like [15]

∂µ (fµν∂νf
′) = 0 (35)

in which, we make the Greek indices run from 0 to 1,
with the identification that 0 stands for t and 1 stands
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for x. An inspection of the terms in the left hand side of
equation (34) – all of them divided by the constant g –
will then enable us to construct the symmetric matrix

fµν =
1
gh0

(
1 v0
v0 v

2
0 − gh0

)
. (36)

Now in terms of the metric gµν , the d’Alembertian for a
scalar in curved space, is given by [15]

ψ ≡ 1√−g∂µ

(√−g gµν∂νψ
)

(37)

in which gµν is the inverse of the matrix implied by gµν .
Under the equivalence that fµν =

√−g gµν , and therefore,
g = det (fµν), we can immediately set down an effective
metric

gµν
eff =

(
1 v0
v0 v

2
0 − gh0

)
(38)

that is entirely identical to the one obtained by Schützhold
and Unruh, following whom, the inverse effective metric,
geff

µν , can also be easily obtained from equation (38). This
shall identify v2

0 = gh0 as the ergosphere condition on the
horizon of either a black hole or a white hole, depending on
the direction of the flow. In the case of the two-dimensional
circular hydraulic jump, as Volovik has pointed out [16],
the jump condition can be closely related to the horizon of
a white hole, a surface that nothing can penetrate. This
analogy is entirely apt for the channel flow that we are
studying here, considering the direction in which the flow
proceeds.

Introduction of viscosity in the flow does affect the ide-
alised inviscid conditions in the vicinity of the white hole
horizon. Schützhold and Unruh themselves have treated
viscosity as a small adjunct effect on the inviscid flow,
and have concluded that although viscosity will introduce
a thin boundary layer, the flow outside it shall very well be
governed by inviscid conditions, and that the basic prop-
erties of gravity waves will not be drastically affected. In
our presentation of the perturbative analysis, we have sys-
tematically included viscosity in our governing equations,
which has finally led to equation (34). It is quite evident
that the presence of viscosity disrupts the precise symme-
try of the inviscid conditions described by equation (35).
This obviously implies that the clear-cut horizon condition
that one obtains from the inviscid limit, will be affected.
However, this effect, for small viscosity, as Schützhold and
Unruh have argued, cannot be too drastic. This is very
much in conformity with our observation in the previous
section that fitting the inner and outer solutions through a
shock will shift the position of the jump only slightly. One
way or the other, the most important feature to emerge
from the analogy of white hole horizon shall remain qual-
itatively unchanged, namely, that a disturbance propa-
gating upstream from the subcritical flow region (where
v2
0 < gh0) cannot penetrate through the horizon (where
v2
0 = gh0) into the supercritical region of the flow (where
v2
0 > gh0). As we shall see shortly, this property of the

flow will have a very crucial bearing on a physical picture

that we shall construct to explain the formation of the
hydraulic jump.

For our purposes it should also be important to study
the behaviour of the perturbation f ′. To that end we go
back to equation (34) and recast it in a slightly altered
form that looks like

∂2f ′

∂t2
+ 2

∂

∂x

(
v0
∂f ′

∂t

)
+

1
v0

∂

∂x

[
v0

(
v2
0 − gh0

) ∂f ′

∂x

]
=

− ν

h2
0

(
∂f ′

∂t
+ 3v0

∂f ′

∂x

)
. (39)

Using a solution of the type f ′(x, t) = p(x) exp(−iωt) in
equation (39) gives an expression that is to be further
multiplied by v0p throughout, to finally deliver a quadratic
equation in ω that is of the form

− ω2
(
v0p

2
) − iω

[
d
dx

(v0p)
2 + ν

v0p
2

h2
0

]

+ p
d
dx

[
v0

(
v2
0 − gh0

) dp
dx

]
+ 3ν

v2
0p

h2
0

(
dp
dx

)
= 0. (40)

To have any idea of how the perturbation behaves in time,
we treat it as a standing wave. For that purpose we will
have to integrate the above equation between two chosen
boundaries, at which the perturbation will be constrained
to vanish at all times. Between these two boundaries the
flow should be continuous. Since we are aware that the
jump itself is a discontinuity in the flow, we will have to
choose the boundaries to be on one side of the jump only,
although equation (40) itself holds true over the entire
range of the flow. We have already acquainted ourselves
with the fact that a perturbation in the subcritical region
will remain confined to this region only. Besides, in this
region the flow would have entirely lost its laminar char-
acter, and therefore, would be most suited for us to derive
some physical insight about the behaviour of the pertur-
bation and the influence of viscosity on that. Therefore,
we confine our analysis to the subcritical region of the
flow only. As for the boundaries of the perturbation, one
of them can be the outer boundary of the steady flow it-
self, while the inner boundary may be chosen to be very
close to the jump. In this regard we treat the jump itself
as a boundary wall where all velocity and height fluctu-
ations decay out completely. Under these conditions an
integration of equation (40) leads to

ω2

∫
v0p

2 dx + iων
∫
v0p

2

h2
0

dx− 3ν
∫ (

v0
h0

)2

p
dp
dx

dx

+
∫
v0

(
v2
0 − gh0

) (
dp
dx

)2

dx = 0 (41)

which is a result that has been arrived at by carrying
out the integration by parts, and then by imposing the
requirement that all the integrated “surface” terms vanish
at the two boundaries.

Under inviscid conditions, ω will have a purely real
solution, and therefore the perturbation will be a stand-
ing wave with a constant amplitude in time. However, the
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dissipative presence of viscosity will result in the pertur-
bation being damped out, and will restore the system to-
wards a stable configuration. The consequent time-decay
of the amplitude of the perturbation will be of the form
exp(−νt/2h2

0). This also gives a time scale for viscous
dissipation, which, to an order-of-magnitude, is given by
tvisc ∼ h2

0/ν.
It is now important to appreciate that viscous drag in

the fluid will also dissipatively slow down the flow on this
very same time scale tvisc. The information of an advanced
layer of fluid slowing down has to propagate upstream to
preserve the smooth continuity of the fluid flow. This prop-
agation, however, cannot happen any faster than the speed
of the surface gravity waves, (gh0)1/2, and in the region
where v0 > (gh0)1/2, i.e. in the supercritical region, no in-
formation therefore can propagate upstream [11]. This is
also what we should entirely expect from the modelling of
the jump as the horizon of an impenetrable white hole. So
a stream of fluid that has arrived later, after having passed
through the supercritical region, moves on ahead, yet un-
hindered and uninformed, till its speed becomes compara-
ble with the speed of the surface gravity waves, and only
then does any knowledge about a “barrier” ahead catches
up with the fluid. We now define a dynamic time scale,
tdyn ∼ x/v0, on which the bulk flow proceeds. If we set
tvisc � tdyn with the additional requirement v0 � (gh0)1/2,
we get the condition for the “news” of the viscous slowing
down finally catching up with the bulk flow itself. With
the additional constraint that we have from the continuity
equation, i.e. v0h0 = Q/L, we can then derive a scaling
relation for length which is entirely identical to the scaling
dependence of the position of the hydraulic jump,

xj ∼
(
Q

L

)5/3

ν−1g−1/3 (42)

as given by equation (22) – a result that we have already
obtained from our study of the stationary flow equations.

The crux of the argument that emerges from our anal-
ysis is that for the formation of the hydraulic jump, the
two time scales, tvisc and tdyn, would have to match each
other closely when the Froude number, F , is close to unity.
Under these conditions, a layer of fluid arriving lately is
confronted with a barrier formed by a layer of fluid moving
ahead with an abrupt slowness. This slowly moving layer
of fluid flowed past earlier in time, and at far distances
it has been retarded considerably by viscous drag. Since
in this situation there could not be an indefinite accumu-
lation of the fluid, and since continuity of the fluid flow
has to be preserved, the newly arrived fluid layer slides
over the earlier viscosity dragged slowly moving layer of
the fluid, and what we see is a sudden increase in the
height of the fluid layer – a hydraulic jump. This gives a
conceivable physical basis for understanding how crucial a
factor viscosity is behind the formation of the jump, and
in connection with this physical picture, it is also worth-
while to ponder the possibility that the viscosity-induced
boundary layer of the flow gradually increases in thickness
and the jump occurs at that distance, where the bound-

ary layer pervades the entire height of the thin layer of
the flowing fluid, i.e. from z = 0 to z = h(x).

While dwelling on the issue of the physical picture of
the jump formation, we are tempted to adduce a related
astrophysical analogy: the formation of hot spots in galax-
ies. Gaseous jets emanating from galaxies encounter resis-
tance from the intergalactic medium. As a result the tip
of the jet is slowed down in comparison with its bulk. This
causes energy to accumulate at the tip, and this is a likely
explanation for the formation of a hot spot. The gas flow
in the jet proceeds at supersonic speeds, but on coming
close to the hot spot, the flow experiences an abrupt decel-
eration. The information of this sudden braking is not con-
veyed upstream, since no sound wave can move against the
supersonic flow. This causes a shock wave to form across
the jet [17]. In this particular astrophysical picture, one
might discern much similarity of principle with our physi-
cal arguments behind the formation of the hydraulic jump
in the channel flow.

Another significant point of which we should like to
make mention is that instead of equation (27) we could
have chosen to use the dynamic generalisation of equa-
tion (19) with the dimensionless constants α and β in-
cluded, but to derive the particular form of the perturba-
tion equation as given by equation (34), we would have
to set α = 1/2. This argument possibly has an important
bearing on the issue of the velocity profile of the flow.

5 Experimental results

A relatively simple experiment, using water, was carried
out to substantiate our theoretical propositions. Our ob-
jectives were two-fold. First, to verify the linear growth of
the surface height of the flow at small distances, and sec-
ondly, to verify the scaling of the jump position as given
by equation (42). It has been satisfying to note that our
theory – presented heuristically in parts – has very much
been borne out within the limited objectives of our exper-
iment.

The experimental apparatus has already been illus-
trated schematically in Figure 1. The water flows in a
streamline motion through an open rectangular channel
of width L. An arrangement has been made such that the
water will flow down an inclined channel, with an incli-
nation of 60◦, and then from the edge AB, will start its
one-dimensional motion in the horizontal channel whose
length is 70 cm and width is 9.1 cm. A rectangular box is
attached to the base of the inclined channel. Water comes
from a tap to the rectangular box. There is a slit in the box
through which water flows down the channel. The purpose
of the inclined channel is to make the flow laminar from
the beginning of the horizontal channel. Although this will
introduce a small horizontal component to the flow, in so
far as we would be interested in the scaling relations only,
any small extraneous addition to the flow should not too
drastically affect our observations. In any case, preserving
the laminarity of the flow should be necessary for the un-
ambiguous recording of data. For that purpose, the height
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Fig. 5. The height profile h(x) before the jump for different
values of Q, the volumetric flow rate.

of the water layer has been measured with a travelling mi-
croscope. The flow has been viewed through the transpar-
ent perspec wall of the horizontal channel. At each value
of x, we noted down the vertical positions of the bottom
of the flow in contact with the bed of the channel, and of
the free surface of the flowing water (both of which were
easily identifiable in the field of view of the microscope).
The difference of the two readings gave h(x).

Viewed from the top of the channel, the jump itself
has been seen to present a curved front across the width
(i.e. along the y axis) of the channel. This is because the
flow in contact with the boundary walls of the channel (at
y = 0 and y = L respectively) has been dragged down
by viscosity. The position of the jump, xj, is actually an
average value measured over this lateral curved profile.

To estimate the volumetric flow rate, we adopted the
simple recourse of collecting the water falling off at the
outer edge of the channel, and then of measuring the vol-
ume of the water collected for various intervals of time.
The average of all these readings has been taken to deter-
mine Q. The steadiness of the flow has also been confirmed
by this approach. Values of Xe, at the outer edge of the
channel (discussed in Sect. 3), range between 1.5 and 2.8
in our experimental set-up.

We observed a very slow rise in h(x) for a while and
then a major jump. That the rising profile of h(x) will be
linear, as we might rightly expect on the basis of equa-
tion (23), has been shown in Figure 5 for two different
values of Q. We also show the scaling dependence of the
jump position xj on Q5/3 in Figure 6. The predicted lin-
earity from equation (42) has been depicted quite clearly
here. It is obvious that once the 5/3 power dependence of
xj on Q has been established experimentally, the depen-
dence on ν and g, as equation (42) shows, must follow even
on the basis of elementary dimensional considerations. So
our theoretical scaling law stands vindicated by our simple
experiment.

More to this point, we also furnish two photographs
of the cross-section of the flow with the jump included.
We show a long distance snapshot of the flow in Figure 7.
The flow has been dyed red to make it more prominent,
when viewed through the transparent perspec wall. The

Fig. 6. The position xj of the jump for different volumetric
flow rates Q.

Fig. 7. A sideview of jump region with the flow proceeding
from the left to the right. The flow appears black in the photo-
graph, because it has been coloured with a red dye. The jump
is clearly discernable, as also are the growth and decay profiles
of the surface height, before and after the jump, respectively.

jump is very much discernable in this photograph, but we
must also draw attention to the slow linearised growth of
the height of the flow much before the jump, followed by
its much more rapid growth immediately in front of the
jump. This is further followed by a small decrease in the
flow level in the region beyond the jump. Qualitatively
this is what we should expect on the basis of the plot in
Figure 4. That the variation of the flow height we see in
the photograph, is not as pronounced as Figure 4 would
impress upon us, is because of the fact that the axes in
Figure 4 have been scaled in terms of the flow constants,
while the variation of the flow height in the actual pho-
tograph proceeds on the scale of CGS units. The jump
appears much more prominently in the close-up view of
the jump region, shown in Figure 8.

From Table 1 it is seen that the jump remains almost
constant within an experimental error of about 6%. The
combined effect of the theoretical analysis and the exper-
imental results leads us to believe that the magnitude of
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Fig. 8. A close-up sideview of the jump region.

Table 1. The magnitude of the jump ε, at different volumetric
flow rates Q.

Q h1 h2 ε = H− 1
(cm3s−1) (cm) (cm)

66 0.415 0.590 0.42
91 0.430 0.619 0.44
121 0.445 0.648 0.46
148 0.573 0.856 0.49
152 0.590 0.890 0.51
162 0.621 0.940 0.51

the jump in a shallow layer flow will show no drastic vari-
ation.

The z profile of the velocity field u(x, z) also calls
for some comments. The slope in equation (22) depends
on the numbers α and β according to the combination
α4/3/β, which, for a parabolic profile (α = 6/5 and β = 3)
is about 0.425. This ultimately gives a theoretical estimate
of the slope to be approximately 0.204. But the experimen-
tal data as plotted in Figure 6 show that the actual slope
(nearly 0.007) is much smaller. This leads us to infer that
the profile is much steeper than parabolic near the plate
and much flatter near the free surface.

In the experiment we have also seen that the flow
becomes turbulent after the jump, with the formation of
vortices. We have not made any measurement for this
region as we have been interested in the laminar flow
only. However, we have noticed that for low volumetric
flow rates, turbulence in the subcritical flow region dies
down appreciably, as the flow proceeds downstream. On
the other hand, for high flow rates, turbulence is seen to
be sustained right up to the outer boundary of the flow.
Qualitatively this is what it should be. Turbulent fluctua-
tions derive their energy from the mean flow. If the mean
flow is more energetic, such as it should be for higher flow
rates, then turbulent effects will linger in the flow that
much longer. Regarding this issue, it should be possible for
us, at least in an order-of-magnitude sense, to make a the-
oretical estimate of the Reynolds number of the turbulent
flow, immediately after the jump. In the shallow layer flow,

the largest possible turbulent eddies should have a char-
acteristic length scale that should at most be of the order
of the flow height h, in the subcritical region. The char-
acteristic turnover velocity of the eddies should likewise
be of the order of (but less than) the velocity of surface
gravity waves, (gh)1/2. The Reynolds number of the flow,
Re, should therefore be given by Re ∼ ν−1(gh3)1/2. In
our experiment, typical values of the flow constants g and
ν would be 1000 cm s−2 and 10−2 cm2 s−1, respectively.
From Table 1, for various values of Q, we may have an
estimate of the characteristic values of the flow height h
immediately after the jump. These measurements should
then typically give Re ∼ 1000, an estimate, whose direct
verification, however, would be beyond the scope of our
experiment.

SBS is grateful for discussions with Prof. Deepak Dhar. AKR
thanks Dr. Tapas K. Das for drawing attention to some recent
works in the subject of analogue gravity.
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